High-order kinetic flux vector splitting schemes in general coordinates for ideal quantum gas dynamics

نویسندگان

  • Jaw-Yen Yang
  • Tse-Yang Hsieh
  • Yu-Hsin Shi
  • Kun Xu
چکیده

A class of high-order kinetic flux vector splitting schemes are presented for solving ideal quantum gas dynamics based on quantum statistical mechanics. The collisionless quantum Boltzmann equation approach is adopted and both Bose– Einstein and Fermi–Dirac gases are considered. The formulas for the split flux vectors are derived based on the general three-dimensional distribution function in velocity space and formulas for lower dimensions can be directly deduced. General curvilinear coordinates are introduced to treat practical problems with general geometry. High-order accurate schemes using weighted essentially non-oscillatory methods are implemented. The resulting high resolution kinetic flux splitting schemes are tested for 1D shock tube flows and shock wave diffraction by a 2D wedge and by a circular cylinder in ideal quantum gases. Excellent results have been obtained for all examples computed. 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics

A class of high resolution kinetic beam schemes in multiple space dimensions in general coordinates system for the ideal quantum gas is presented for the computation of quantum gas dynamical flows. The kinetic Boltzmann equation approach is adopted and the local equilibrium quantum statistics distribution is assumed. High-order accurate methods using essentially non-oscillatory interpolation co...

متن کامل

Gas-Kinetic Theory-Based Flux Splitting Methodfor Ideal Magnetohydrodynamics

A gas-kinetic flux splitting method is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of “particle” collisions in the transport process. Consequently, the artificial dissipation in the new scheme is greatly reduced in comparison with the MHD flux vector splitting method. N...

متن کامل

Kinetic Flux Vector Splitting for the Euler Equations with General Pressure Laws

This paper attempts to develop kinetic flux vector splitting (KFVS) for the Euler equations with general pressure laws. It is well known that the gas distribution function for the local equilibrium state plays an important role in the construction of the gas–kinetic schemes. To recover the Euler equations with a general equation of state (EOS), a new local equilibrium distribution is introduced...

متن کامل

The numerical simulation of compressible flow in a Shubin nozzle using schemes of Bean-Warming and flux vector splitting

Over the last ten years, robustness of schemes has raised an increasing interest among the CFD community. The objective of this article is to solve the quasi-one-dimensional compressible flow inside a “Shubin nozzle” and to investigate Bean-Warming and flux vector splitting methods for numerical solution of compressible flows. Two different conditions have been considered: first, there is a sup...

متن کامل

Entropy satisfying flux vector splittings and kinetic BGK models

We establish forward and backward relations between entropy satisfying BGK relaxation models such as those introduced previously by the author and the rst order ux vector splitting numerical methods for general systems of conservation laws. Classically, to a kinetic BGK model that is compatible with some family of entropies we can associate an entropy ux vector splitting. We prove that the conv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2007